ARNO and ARF6 Regulate Axonal Elongation and Branching through Downstream Activation of Phosphatidylinositol 4-Phosphate 5-Kinase
نویسندگان
چکیده
In the developing nervous system, controlled neurite extension and branching are critical for the establishment of connections between neurons and their targets. Although much is known about the regulation of axonal development, many of the molecular events that regulate axonal extension remain unknown. ADP-ribosylation factor nucleotidebinding site opener (ARNO) and ADP-ribosylation factor (ARF)6 have important roles in the regulation of the cytoskeleton as well as membrane trafficking. To investigate the role of these molecules in axonogenesis, we expressed ARNO and ARF6 in cultured rat hippocampal neurons. Expression of catalytically inactive ARNO or dominant negative ARF6 resulted in enhanced axonal extension and branching and this effect was abrogated by coexpression of constitutively active ARF6. We sought to identify the downstream effectors of ARF6 during neurite extension by coexpressing phosphatidyl-inositol-4-phosphate 5-Kinase [PI(4)P 5-Kinase ] with catalytically inactive ARNO and dominant negative ARF6. We found that PI(4)P 5-Kinase plays a role in neurite extension and branching downstream of ARF6. Also, expression of inactive ARNO/ARF6 depleted the actin binding protein mammalian ena (Mena) from the growth cone leading edge, indicating that these effects on axonogenesis may be mediated by changes in cytoskeletal dynamics. These results suggest that ARNO and ARF6, through PI(4)P 5-Kinase , regulate axonal elongation and branching during neuronal development.
منابع مشابه
ARNO and ARF6 regulate axonal elongation and branching through downstream activation of phosphatidylinositol 4-phosphate 5-kinase alpha.
In the developing nervous system, controlled neurite extension and branching are critical for the establishment of connections between neurons and their targets. Although much is known about the regulation of axonal development, many of the molecular events that regulate axonal extension remain unknown. ADP-ribosylation factor nucleotide-binding site opener (ARNO) and ADP-ribosylation factor (A...
متن کاملPhosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation.
Synthesis of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], a signaling phospholipid, is primarily carried out by phosphatidylinositol 4-phosphate 5-kinase [PI(4)P5K], which has been reported to be regulated by RhoA and Rac1. Unexpectedly, we find that the GTPgammaS-dependent activator of PI(4)P5Kalpha is the small G protein ADP-ribosylation factor (ARF) and that the activation strictly req...
متن کاملPhosphatidylinositol 4,5-bisphosphate and Arf6-regulated membrane traffic
ADP-ribosylation factor (Arf) 6 regulates the movement of membrane between the plasma membrane (PM) and a nonclathrin-derived endosomal compartment and activates phosphatidylinositol 4-phosphate 5-kinase (PIP 5-kinase), an enzyme that generates phosphatidylinositol 4,5-bisphosphate (PIP2). Here, we show that PIP2 visualized by expressing a fusion protein of the pleckstrin homology domain from P...
متن کاملArfs, phosphoinositides and membrane traffic.
Arf (ADP-ribosylation factor) GTP-binding proteins function in cells to regulate membrane traffic and structure. Arfs accomplish this task through modification of membrane lipids and the recruitment of proteins, including coat proteins and actin, to membrane surfaces. Arf1 and Arf6 are the most divergent and most studied human Arf proteins that localize predominantly to the Golgi complex and pl...
متن کاملRegulation of ARNO nucleotide exchange by a PH domain electrostatic switch
ARNO is a member of a family of guanine nucleotide exchange factors that activate small GTPases called ADP-ribosylation factors (ARFs) [1] [2] [3], which regulate vesicular trafficking and, in one case (ARF6), also regulate cortical actin structure [4]. ARNO is located at the plasma membrane, and in the presence of activated protein kinase C (PKC) can induce cortical actin rearrangements remini...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003